Reg. No. : \qquad
Name : \qquad
II Semester B.C.A. Degree (CCSS - 2014 Admn. - Regular)
Examination, May 2015 COMPLEMENTARY COURSE IN MATHEMATICS 2C02 MAT - BCA : Mathematics for BCA - II

Time: 3 Hours
Max. Marks : 40

SECTION - A

All the first 4 questions are compulsory : They carry 1 mark each.

1. Give an example of a non-zero 3×3 skew symmetric matrix.
2. Find the algebraic multiplicity of the eigen-value of the matrix $\left[\begin{array}{ll}3 & 2 \\ 0 & 3\end{array}\right]$.
3. State the Cayley Hamilton Theorem.
4. What is the maximum degree of any vertex in a graph with n vertices?
SECTION - B

Answer any $\mathbf{7}$ questions from among the questions 5 to 13. They carry 2 marks each.
5. Find the area bounded by the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$.
6. Find the whole length of the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
7. Find the rank and a basis for the column space of the matrix $\left[\begin{array}{rr}1 & -2 \\ 0 & 0 \\ -3 & 6\end{array}\right]$.
8. Give any two elementary row operations for matrices.
9. Show by example that rank $A=$ rank B does not imply rank $A^{2}=\operatorname{rank} B^{2}$.
10. Show that the transpose of a square matrix A has the same eigenvalue as A.
11. Show that the number of vertices of odd degree in any graph is even.
12. Find two non-isomorphic graphs with degree sequence $(2,2,2,1,1)$.
13. If δ and Δ denote the minimum and maximum vertex degrees in a (p, q) graph, show that $\delta \leq \frac{2 q}{p} \leq \Delta$.

SECTION-C

Answer any 4 questions from among the questions 14 to 19. They carry 3 marks each.
14. Evaluate $\iint x y(x+y) d x d y$ over the area between $y=x^{2}$ and $y=x$.
15. Obtain the intrinsic equation of the catenary $y=a \cosh (x / a)$ taking the vertex $(0, a)$ as the fixed point.
16. Solve by Gauss elimination method :
$x_{1}-x_{2}+x_{3}=0$
$-x_{1}+x_{2}-x_{3}=0$
$10 x_{2}+25 x_{3}=90$
$20 x_{1}+10 x_{2}=80$
17. Find the eigen vectors of $\left[\begin{array}{rrr}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$.
18. Show that every square matrix can be expressed as the sum of two matrices of which one is symmetric and the other skew symmetric.
19. Show that in any graph, a closed walk of odd length contains a cycle.
SECTION-D

Answer any 2 questions from among the questions 20 to 23 . They carry 5 marks each.
20. Evaluate $\iiint_{V}(2 x+y) d x d y d z$ where V is the closed region bounded by the cylinder $z=4-x^{2}$ and the planes $x=0, y=0, y=2$ and $z=0$.
21. Solve by Cramer's rule :
$3 y+4 z=14.8$
$4 x+2 y-z=-6.3$
$x-y+5 z=13.5$.
22. Find an eigen basis and diagonalize.

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

23. Show that the maximum number of lines among all p point graphs with no triangles is $\left[\frac{\mathrm{p}^{2}}{4}\right]$.
